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The plane contact problem of the sliding without friction of a rigid cylinder over a viscoelastic half-space when there is adhesion 
is solved, neglecting the inertial properties of the half-space. The distribution of the contact pressure, the size and position of 
the contact area, and the deformation force of resistance to motion of the cylinder are investigated as a function of the adhesion 
properties of the surfaces, the mechanical characteristics of the half-space and the sliding velocity of the cylinder. © 2005 Elsevier 
Ltd. All rights reserved. 

In order to investigate the contact interaction of viscoelastic bodies during sliding, the problem of the 
sliding of a rigid cylinder over a viscoelastic half-space was solved in the plane formulation in [1, 2] by 
a method based on reducing it to a Riemann-Hilbert  problem. A similar method is used below to 
investigate the role of adhesion during the sliding of a cylinder over a viscoelastic half-space. Earlier, 
effects of adhesion during the contact of viscoelastic bodies were studied in [3] in the case when the 
bodies were moving towards or away each other in the normal direction. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

The plane contact problem is considered for a viscoelastic half-space, the properties of which are 
described by the equations 
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where OxO, OyO and "CxOy0 are the stress tensor components, ~ ,  eT0 and 7~OyO are the strain tensor components, 
E is the Young's modulus, v is Poisson's ratio, T~ and To characterize the viscous properties of the half- 

0 0 space, (x,  y ) is the system of coordinates connected with the half-space and t is the time. Equations 
(1.1) are a two-dimensional analogue of the Maxwell-Thomson model and correspond to the case of 
plane strain. 

A rigid cylinder of radius R slides along the boundary of a viscoelastic half-space at a velocity w (Fig. 1). 
It is assumed that there is no friction between the cylinder and the half-space. The inertial properties 
of the half-space will be ignored. 

*Prikl. Mat. Mekh. Vol. 69, No. 2, pp. 334-344, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.03.017 
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To describe the adhesion interaction of the surfaces, we will use the model [4] according to which 
the force of attraction of the surfaces per unit area is approximated by a piecewise-constant function 

= I p°' 0 < h < h 0  
Pa(h) [0, h > h  o (1.2) 

where h is the size of the gap between the interacting surfaces. The surface energy of interaction "/is 
defined by the relation 

= Ipa (h )dh  = Poho "[ 

0 

This leads to the condition for the maximum size of the gap h0, for which the surfaces still experience 
adhesion attraction 

ho = Tlpo (1.3) 

The surface energy ~/and the adhesion pressure P0 are considered to be specified quantities. 
We will introduce a moving system of coordinates (x, y) connected with the cylinder: x = x ° - wt, 

y = y0. Assuming that the shape of the cylinder in the vicinity of the region of interaction with the half- 
space can be described by the function f (x)  = x2/(2R), we obtain the following boundary conditions for 
the viscoelastic half-space in the moving system of coordinates (x, y): 

the conditions in the contact area 

21) x 
. ~  = ~ ,  T, xy[y=O = O, - a < x < b  (1.4) 

where v(x) is the normal displacement of the boundary of the viscoelastic half-space, the conditions in 
the region of adhesion interaction 

(YYIy=O = PO, Xxyly=O = O, - a l  < x < a ,  b < x < b  I (1.5) 

and the condition for there to be no load outside the interaction region 

(Yyly=0 = 0, ~Xyly=O = 0' x < - - a l ,  x > b  I (1.6) 

In the moving system of coordinates (x. y) the stresses, strains and displacements do not depend 
explicitly on time. In particular, for normal displacement of the boundary of the half-space we have 
aJ(x) = a~°(x + wt, t), where a)°(x °, t) is the normal displacement in the moving system of coordinates 
(x o, yO). Differentiating this identity with respect to time, we obtain 0x)(x °, O/St = -wOa~(x)/Ox. Similar 
relations hold for the derivatives of all the components of the stresses, displacements and strains. 



The sliding of viscoelastic bodies when there is adhesion 307 

We will introduce the following notation 

£ *  = £x 0 - Tew'-~X , 

= ax0- roW -x , 
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Cy = t~yO- T a w - ~  x , %xy = XxOrO- Tow bx (1.7) 
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Then, Eqs (1.1) take a form identical with that of Hooke's law for an elastic half-space. The functions 
introduced with an asterisk also satisfy the equations of equilibrium and consistency of the strains for 
an elastic body. 

In order to obtain the boundary conditions for the functions with an asterisk in (1.7), we will use 
conditions (1.4)-(1.6). From (1.5) and (1.6) it can be seen that the function ~y wheny = 0 outside the 
contact area can be represented using Heaviside's 0-function 

= I p o O ( x + a l ) ,  x < - a  

t~Y]Y = ° kPoO(bl-x) ,  x > b  

Taking this into account, we obtain the following boundary conditions at y = 0 for the functions with 
an asterisk 

* = 0 ,  - a < x < b  Ov*/bx = ( x -  T~w)/R, %xy 

* * = 0 ,  x _ < - a  ( 1 . 8 )  ay = poO(X + a 1) - TawPoS(X + al), x~y 

* * = 0 ,  x > b  ~y = poO(bl - x) + TawPoS(b 1 - x), xxy 

where 8(x) is delta function. 
Thus, the initial problem reduces to solving the problem for an elastic half-space with boundary 

conditions (1.8). After this, the true stresses, strains and displacements in a viscoelastic half-space can 
be determined from the solution of differential equations (1.7). 

2. M E T H O D  OF S O L U T I O N  

Solution of the problem for an elastic half-space. To solve the problem for an elastic half-space with 
boundary conditions (1.8), we will use Galin's method [5] and introduce, fory < 0, the function of the 
complex variable z = x - iy 

+ ~  

r . dt (2.1) W(Z) = U - i V =  j t~y t _  z 

Since at the boundaryy = 0 of the elastic half-space the relation 

-t-M 

nE Oo* , dt 1 - 2 v  , 
= t~Yt-X 2 2 ( 1 - v  2) 3x f _--~rCX~y (2.2) 

is satisfied [5], taking the limit value of Cauchy-type integral (2.1) when z ~ x - i 0  into account, from 
conditions (1.8) we obtain the boundary conditions for the function W(z) 

~E 
U(x,O) 2(1 - v 2 ) R  (x -TEw) '  - a < x < b  

= ~rCpoO(x+al)-xTowPoS(x+at)  , x<_-a 

V(x, O) [ltpo0(b I - x) + xTowPoS(b I - x), x_> b 

(2.3) 
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The problem of determining the function W(z), which is analytical when y _ 0, for the prescribed 
boundary conditions (2.3) at y = 0 is a special case of the Riemann-Hilber t  problem. The solution of 
this problem, which behaves like P/z as z + ~ ,  has the form [5] 

b 

-a 

-,= Z b Z.j 
(2.4) 

Here 

Z(z)  = ( z + a ) ( z - b )  

P is the normal external force acting on the cylinder (Fig. 1). 
Knowing the function IV, it is possible to determine the stress ~ and displacements x)* at the boundary 

y = 0 from the relations [5] 

U(X, 0) = e * ~ ' 0 .  V ( x , O )  -'- '/~(Y~gly -- 0' E* --- x E  (2.5) 
bx ' 2( 1 - v 2) 

Taking these relations into account, after taking the integrals in (2.4), we obtain the following 
expressions for stress o~ and displacements a)* 

~ [y = o = - p * ( x )  = [- F(x)  + G(x)]l•, -a  < x < b 

2o* x - T s w  ~ [ H ( x ) - F ( x ) l l E * ,  -a  I <x  <-a  (2.6) 

bx - T + [ [ F ( x ) - H ( x ) I / E * ,  b < x < b  1 

where 

F ( x ) =  1 f e * r l  1 2x)] ~ , l . ' ~ L - ~ ( a + b ) 2 + r 2 ( x - T e w ) ( b - a -  + 
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Determination of  the true stresses and displacements at the boundary of  a viscoelastic half-space. The 
stresses and displacements at the boundary of a viscoelastic half-space are determined by solving 
differential equations (1.7). The conditions of continuity for these stresses and displacements are used 
as the boundary conditions. Taking the condition p(--a) = -P0 into account, where p(x) = -ay ly = 0 is 
the contact pressure, we will obtain, in the contact area --a < x < b, the expression 

x 

1 t _ . .  (x- t ) l (Taw).  (x+a)l(Tow) 
p(x)  = T-awjp'~tt)e a t - p o e  (2.8) 

-a 

Taking into account the condition Oa)/ax = --air at x = -a, we obtain the following expression for the 
displacement when -a l  < x < -a: 

- a  

~v(x)  1 t a ' o* ( t )  (x-t)/(TEw) . a ( x + a ) l ( T ~ w )  

ax - T"~ J ~ e  at-  ~e (2.9) 
x 

In order to obtain an expression for the displacements in the region b < x < bl, we will use the condition 
aa)/ax = b/R when x = b 

x 

Ol)(x)o_.....~ = - 1--Lral)*(t) at dt + be(X-b)l(r~w) (2.10) 

b 

The relations (2.8)-(2.10), in which the functions p*(x) and av*(x)/Ox are specified by expressions 
(2.6), define the normal pressure and the normal displacements at the boundary of the viscoelastic half- 
space. 

Determination of  the boundaries of  the contact areas and adhesion interaction. Relations (2.8)-(2.10), 
which define the stresses and displacements at the boundary of the viscoelastic half-space, contain the 
unknown quantities, a, b, al and bl - the coordinates of the boundaries of the area of contact of the 
cylinder with the half-space (--a and b) and the external boundaries of the region of adhesion interaction 
of the surfaces (--al and b 0. To determine these four unknown quantities, four conditions are needed. 

The first condition stems from the remaining unused condition of continuity of the contact stress at 
x = b. From expression (2.8), taking into account conditionp(b) = -Po, we obtain 

b 

1 ¢ O)e-X/(r~W) dx + po(1 
(a + b)l(Taw)) 

j p*(x, - e  = 0 (2.11) 
T a w  

- a  

The second condition is obtained from the condition for the strains to attenuate at the boundary of 
the half-space atx --~ oo. The application of this condition to relation (2.10) gives 

+e,a 

Tew ~ e-Xl(T~W)dw- e-bl(TEw) = 0 

b 

(2.12) 

The third and fourth conditions follow from the fact that the size of the gap between the surfaces of 
the cylinder and the half-space at the pointsx = -a 1 andx = bl should be equal to the maximum distance 
h 0 at which the surfaces still experience adhesion attraction (see (1.2)). Equating the gap size at the 
point x = -a 1 to the quantity h 0 defined by relation (1.3), we obtain 

f (  -a  I ) -- f ( - a )  - v( -a  1 ) + v ( -a )  = TlPo 

from which it follows that 

- a  2 2 

Po 2R 
- - a  I 
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Substituting into this relation the expression for the derivative of the normal displacement of the 
boundary of the half-space (2.9) when -a 1 < x < --a, and changing the limits of integration, we obtain 
the condition 

a " I I OV*(x)(1 r~- y a l - a  - x  - - e d x  - 1 -  e - - -  
Po 2 R  

-a  I 

(2.13) 

In a similar way, equating the gap size at the point x = bl to the magnitude of h0, we find the fourth 
condition 

bl / b l - X  b l - b  2 2 

e re . ,  _ 1 d x -  - - - - - ~ - i e  - 1 - 

b ~ P o  2 R  
(2.14) 

The system of four equations (2.11)-(2.14) obtained for determining the four unknowns a, b, a 1 and 
bl was solved numerically by Newton's method. 

3. THE CASE OF AN E L A S T I C  H A L F - S P A C E  

We will consider the case of an elastic half-space interacting with a rigid cylinder when there is adhesion. 
In this case we obtain the contact problem for an elastic half-space with boundary conditions (1.5)-(1.6). 
Solving this problem by a method similar to that set out in Section 2, we find the following expressions 
for the contact pressure when -a  < x _< a (the solution is symmetrical about the Oy axis, i.e. b = a and 
bl = al) 

p ( x )  = -~-~,4a - x  + [ {+(x ) -~_ (x ) -g ]  

a l x + _ a  2 
{+(x) = a r c t g ~  /-5 z 

,4a - x  4 a l - a  

(3.1) 

and the elastic displacement of the boundary of the half-space when a <_ x < al 

d x  R ~ + [rl+(x)- rl_(x)] 

2 
a l x  :r-a 

TI+(X ) = arc th  2 2 2 

(3.2) 

Furthermore, we obtain an expression for the load applied to the cylinder. 

2 2 
P = E * a 2 1 ( 2 R ) -  2po~al  2 -  a (3.3) 

and the condition 

2 ~  ( 2 4Po ~ h .  a l -  4~al 2 2 
a l d a l - a  + ~ a  - - a  _ 2 R T  (3.4) 

"~+-da l - a  )m a po 

which was obtained by equating the size of the gap at the point x = a 1 to the magnitude of h0, defined 
by relation (1.3). Relations (3.3) and (3.4) are used for the numerical determination of the coordinates 
a and al of the boundaries of contact area and adhesion interaction. 
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4. R E S U L T S  OF  C A L C U L A T I O N S  

In the course of a numerical solution of the problem, we investigated how the solution depends on the 
dimensionless parameters characterizing the viscous properties of the half-space 8 = TJT~, the adhesion 
of the surfaces ~ = po[9Rn/(8E*27)] 1/3, the sliding velocity of the cylinder, the delay of the material of 
the half-space ~ = l/2wT~), and also the magnitude of the normal load P = kP(Ipo), where l = 
[R27/(9rr~*)] 1/3. 

Figure 2 shows the distributions of the dimensionless contact pressureff = ~P/Po with respect to the 
dimensionless coordinatex/l for 8 = 1, ~ = 0.5 and various values of the load. The dashed lines indicate 
the pressure distribution with the same parameters for an elastic half-space (relations (3.1), (3.3) and 
(3.4)); these results are identical with the solution obtained for a viscoelastic half-space with 8 = 1. It 
can be seen that allowance for the viscous properties of the half-space leads to a reduction in the contact 
area and an increase in the maximum contact pressure. Furthermore, the distribution of the contact 
pressure becomes asymmetrical. For positive values of the load t5 (the external force presses the cylinder 
against the half-space) the contact area is shifted in the direction of motion of the cylinder. At fairly 
high negative loads (the external force separates the cylinder and the half-space) the contact area is 
shifted in the opposite direction to the motion of the cylinder. There is a similar shift in the region of 
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adhesion interaction of the surfaces, in which the dimensionless pressure at the boundary of the 
viscoelastic space is constant and equal to p = -)~. 

The dependence of the dimensionless width of the contact area (a + b)/l and its shift with respect 
to the axis of the symmetry of the cylinder (b - a)/l_on the parameter • is presented in Fig. 3 for 
)~ = 0.5, 5 = 3 and different loads:/5 = -6.3 (curve 1), P = -3 (curve 2) and/5 = 3 (curve 3). The results 
of the calculations enable us to conclude that the width of the contact area is restricted by the limit 
values it has when K ~ 0 and ~: ~ ~ .  The case when K ~ ~ ,  i.e. w --+ 0, corresponds to the solution 
of the problem of the interaction of a cylinder with an elastic half-space characterized by the modulus 
E. In the case when ~: ~ 0, the viscoelastic half-space behaves like an elastic body with modulus 5E, 
which is termed the persistent elastic modulus. In the case of positive loads (curve 3), an increase in 
the sliding velocity w (a reduction in ~c) leads to a reduction in the size of the contact area. This effect 
is similar to the effect of pivoting when sliding over a viscoelastic body when there is no adhesion [2]. 
In the case of negative values of the load, the dependence of the size of the contact area on the velocity 
is non-monotonic: at high velocities (low ~;) there is a region in which the size of the contact area 
decreases when the sliding velocity decreases (curve 2). The region expands when the absolute value 
of the negative load/5 increases. At fairly high absolute values of the load, a decrease in velocity leads 
to a reduction in the size of the contact area to zero, followed by separation of the interacting surfaces 
(curve 1). Thus, the presence of adhesion leads, for negative loads, to the reverse effect to pivoting: 
when the velocity increases, the separated surfaces come into contact, and here the contact area increases 
as the velocity increases. 

Curve 2' on the left-hand side of Fig. 3 was obtained with the same parameter values as curve 2 but 
with a different viscosity 5 = 10. Curve 2', unlike curve 2, has a monotonic form, i.e. an increase in the 
viscosity parameter 5 led to a reduction in the effects related to adhesion. 

The shift in the contact area (b - a)/l, graphs of which are given on the right-hand side of Fig. 3, is 
positive for positive loads, i.e. the contact area is shifted in the direction of motion of the cylinder (curve 
3), and here the shift reaches its maximum at a certain value of ~: and approaches zero as ~ ~ 0 and 
~: ~ ~ .  Under negative loads the contact area is shifted in the opposite direction (the shift becomes 
negative - curves 1 and 2). 

The results indicate that the regions of contact and adhesion interaction are shifted with respect to 
the axis of symmetry of the cylinder, and the distribution of the contact pressure is also asymmetrical. 
This leads to the emergence of a tangential force acting on the cylinder from the viscoelastic half-space, 
despite the fact that the formulation of the problem assumes zero shear stresses at the boundary of the 
half-space ('C~y = 0 at y = 0). 

We will calculate the tangential force T that must be applied to the cylinder in order to ensure that 
it moves at a constant velocity over the boundary of the viscoelastic half-space. This force is equal to 
the component of the force of reaction of the half-space along the Ox axis. Since the size of the region 
of interaction al + bl is much smaller than the radius R of the cylinder, the following relation (Fig. 1) 
holds 

b~ b~ 

1 
T = I p(x)sintp(x)dx = ~ I xp(x)dx (4.1) 

--a I - a  I 
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an increase in the sliding velocity leads to a reduction in the size of the contact area (the "pivoting 
effect"). These effects are similar to those obtained when adhesion is ignored. 

2. For negative loads on the cylinder (separating it from the half-space) that are sufficiently large in 
absolute magnitude, the contact area is shifted in the opposite direction to the motion of the cylinder. 
The dependence of the size of the contact area on the velocity becomes non-monotonic. For a constant 
negative load, surfaces not in contact may come into contact when the velocity increases. 

3. Allowance for adhesion leads to an increase in the tangential force of resistance to motion of the 
cylinder (the deformation component of the friction force). This force is directed against cylinder motion 
both under positive and negative loads. The resistance force depends non-monotonically on the applied 
load, having a maximum in the region of negative loads. An increase in the adhesion parameter ~, leads 
to an increase in the resistance force. 

4. An increase in the viscosity parameter 8 leads to a reduction in the size of the contact area and 
to an increase in the displacement of this area with respect to the axis of symmetry of the cylinder, and 
also to an increase in the deformation component of the friction force. When 8 = 1, a solution is obtained 
that is identical with the solution of the problem for the contact of an elastic half-plane with a cylinder 
when there is adhesion. 
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